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Abstract. A k-flat in a vector space is a k-dimensional affine subspace. Our

basic result is that an injection T : Cn → Cn that for some k ∈ {1, 2, , . . . , n−1}
T maps all k-flats to flats of Cn and is either continuous at a point or Lebesgue

measurable, is either an affine map or a conjugate affine map. An analogous

result is proven for injections of the complex projective spaces. In the case of
continuity at a point this is generalized in several directions, the main one being

that the complex numbers can be replaced by a finite-dimensional division

algebra over an Archimedean ordered field. We also prove injective versions
of the Fundamental Theorems of affine and projective geometry and give a

counter-example to the surjective version of the latter. This extends work of

A. G. Gorinov on a problem of V. I. Arnold.

1. Introduction

In his book of problems [1] V. I. Arnold asks if a homeomorphism, or more
generally a bijection, Cn → Cn that sends affine subspaces to affine subspaces is
necessarily either an affine mapping, or the complex conjugate of such a map, with
a similar question being asked about homeomorphisms of the complex projective
space CPn and posing analogous questions about the quaternionic affine and pro-
jective spaces Hn and HPn. (Cf. [1] Problems 2000-8 (p. 134), 2002-9, 2002-10
(pp. 144–145) and the comments on these problems p. 614 and p. 627). For homeo-
morphisms A. G. Gorinov, [8], points out that in the case of Cn and CPn the answer
is affirmative and is a direct consequence of the fundamental theorem of projective
geometry. He also shows the answer to a generalization of this question affirmative
in the case of the quaternionic spaces.

In the cases of Cn and CPn we extend these results in several directions. In the
case of Cn the global continuity condition can be replaced either by the condition
the map is continuous at least at one point or the condition the map is Lebesgue
measurable.The condition that all affine subspaces are mapped to affine subspaces
of the same dimension can be weakened to the condition that affine subspaces
of some fixed dimension are mapped to affine subspaces (not necessarily of the
same dimension). Also in this setting the map only needs to be an injection or
surjection rather than a bijection. In the case where it is assumed that the map
is only continuous at a single point, the complex numbers can be replaced by
a finite-dimensional division algebra over an Archimedean ordered field. There
are analogous results for CPn. Finally we prove as lemmas for our main results
injective versions of the Fundamental Theorems of Affine and Projective Geometry
(see Theorems 7 and 11) which may be of independent interest. We also show that

The fourth author was supported by NSF Grant 1500216.

1



2 GORINOV, HOWARD, JOHNSON, AND MCNULTY

the surjective analog of the Fundamental Theorem of Projective Geometry is not
true, see Theorem 12 and Main Theorem 3.

2. Definitions and Statement of Main Results.

Unless stated otherwise, in this paper we let D be a division ring. All our division
rings will be associative and with identity. We do not assume however that D has
finite dimension over its center. Let Dn denote the (left) vector space of all n-tuples
over D and DPn projective space of dimension n over D. (The points of DPn are
the one-dimensional left subspaces of Dn+1.) A k-flat in Dn is a k-dimensional left
affine subspace of Dn (that is, a translate of a k-dimensional left linear subspace of
Dn). Note that in the affine setting, the empty set is taken as a −1-flat. A k-flat
in DPn is a k-dimensional projective subspace of DPn.

Let σ be an automorphism of the division ring D. A map T : Dn → Dn is σ-
semilinear if and only if T (x + y) = T (x) + T (y) and T (cx) = σ(c)T (x) for all
x, y ∈ Dn and c ∈ D. A map f : Dn → Dn is σ-semiaffine if and only if it is of the
form f(x) = T (x) + b where b ∈ Dn and T is σ-semilinear. A map is semilinear
(respectively semiaffine) if and only if it is σ-semilinear (respectively σ-semiaffine)
for some automorphism σ of D. When σ is the identity map these are linear and
affine maps.

These notions also apply to projective spaces. For a nonzero vector v ∈ Dn+1 let
〈v〉 be the one-dimensional left subspace space spanned by v. Then 〈v〉 ∈ DPn. If
A : Dn+1 → Dn+1 is a nonsingular linear map then the map T : DPn → DPn defined
by

T 〈v〉 = 〈Av〉
will be called a linear map on DPn. If σ is an automorphism of D and A is σ-
linear, the map T just defined is σ-linear. We call T semilinear if it is σ-linear
for some σ. In the case when D = C and σ is complex conjugation, we refer to
conjugate linear and conjugate affine maps.

Suppose D has been topologized in such a way that the difference and product
operations D×D→ D, as well as the inversion Dr{0} → Dr{0} are continuous with
respect to the natural topologies. Then D is called a topological division ring,
or a topological field if D is commutative. A straightforward check shows then
that the product topology on a finite-dimensional D-vector space Dn is invariant
with respect to the group of affine transformations. In the sequel we equip all
finite-dimensional affine spaces over D with the resulting topology.

A similar construction can be given for projective spaces. The subset U =
(Dr {0})× Dn−1 ⊂ Dn is open and the map

(x1, x2, . . . , xn) 7→ (x−11 , x2 . . . , xn) (1)

is a homeomorphism U → U . The projective space space DPn can be obtained by
gluing copies of the affine space Dn along maps which are compositions of affine
isomorphisms and (1). This gives us a topology on DPn which is invariant with
respect to the group of projective automorphisms.

Let F be a topological field. If a topological division ring D is an F-algebra and
the F-module operation F×D→ D is continuous, then D is a topological division
F-algebra. In the sequel we topologize any finite-dimensional division algebra D′
over F by embedding it in the endomorphism ring of the underlying F-vector space.
We note that with this topology D′ is a topological division F-algebra.
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If D = F = (F,+, ·, <) is an ordered field, F has the order topology, which
is the topology that has the open intervals (a, b) as a base. In any ordered field
there is the usual absolute value, |a| = max{a,−a}, and it satisfies the standard
properties such as |ab| = |a||b| and the triangle inequality. So a finite-dimensional
division algebra K over F also has a natural topology, as do finite-dimensional
affine and projective spaces over K. If K = F[

√
−1], one has a natural notion of

complex conjugation, a+ b
√
−1 7→ a− b

√
−1, and therefore for the projective and

affine spaces over K the notions of conjugate linear and conjugate affine make sense.
Finally an ordered field F is Archimedean if for all a ∈ F there is a natural number
n such that |a| < n. This is equivalent to the rational numbers being dense in F
with respect to the order topology on F.

For the rest of the paper F is an Archimedean ordered field and K is a topological
division algebra over F. We give K and all other finite-dimensional affine and
projective spaces over K the topologies described above. Call an automorphism
σ : K→ K that fixes F pointwise an F-automorphism. In the following when we
say that T maps k-flats into j-flats we mean that for any k-flat P , there is a
j-flat P ′ with T [P ] ⊆ P ′, but T [P ] might be a proper subset of P ′. We say that
T maps k-flats to j-flats if and only if for any k-flat P there is a j-flat P ′ such
that T [P ] = P ′.

Main Theorem 1. Let V be a finite-dimensional vector space over K with dimen-
sion at least 2. Let T : V → V be a map. If

(i) T is surjective,
(ii) T is continuous at some point of V or F = R, dimF K <∞ and T is Lebesgue

measurable, and
(iii) There is some k with 1 ≤ k < dimV , such that T maps each k-flat into a

k-flat,

then T is a bijection and is σ-semiaffine for some F-automorphism σ of K. If
K = F[

√
−1], then T is either affine or conjugate affine.

Main Theorem 2 (Affine Version). Let V be a finite-dimensional vector space
over K with dimension at least 2. Let T : V → V be a map. If

(i) T is injective,
(ii) T is continuous at some point of V or F = R, dimF K <∞ and T is Lebesgue

measurable, and
(iii) There is some k with 1 ≤ k < dimV , such that T maps each k-flat to a flat,

then T is a bijection and is σ-semiaffine for some F-automorphism σ of K. If
K = F[

√
−1], then T is either affine or conjugate affine.

Main Theorem 2 (Projective Version). Let V be a finite-dimensional projective
space over K with projective dimension at least 2. Let T : V → V be a map. If

(i) T is injective,
(ii) T is continuous at some point of V or F = R, dimF K <∞ and T is Lebesgue

measurable, and
(iii) There is some k with 1 ≤ k < dimV , such that T maps each k-flat to a flat,

then T is a bijection and is σ-linear for some F-automorphism σ of K. If K =
F[
√
−1], then T is either linear or conjugate linear.
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Main Theorem 3 (Counterexample for Projective Spaces). For every n ≥ 2 there
is a map T : CPn → CPn such that

(i) T is surjective,
(ii) Under the map T each point of CPn is the image of infinitely many points

and therefore T is not injective,
(iii) For all m ∈ {1, 2, . . . , n− 1} and each m-flat, P , of CPn the image T [P ] is

an m-flat of CPn,
(iv) For all m ∈ {1, 2, . . . , n − 1} every m-flat of CPn is the image under T of

an m-flat of CPn.

3. Preliminary results.

3.1. Additive Functions. Let S : V → W be a map between vector spaces over
a field F. Then S is additive if and only if it satisfies

S(x+ y) = S(x) + S(y) for all x, y ∈ V . (2)

This equation is often called Cauchy’s functional equation after Cauchy who
proved that an additive continuous map from the reals to the reals is linear.

One well-known extension of Cauchy’s result is

Theorem 1 (Fréchet–Banach–Sierpiński). Let V and W be finite-dimensional real
vector spaces and S : V → W an additive map. If S is Lebesgue measurable, then
it is linear. �

It is not hard to see that if this is true with W = R, then it is true in general.
(Write S(v) =

∑n
j=1 fj(v)wj where w1, . . . , wn is a basis of W . Then each fj will

be additive and measurable and therefore linear.) In the case when V is the real
numbers, the theorem was originally proven by Fréchet [7]. It was later proven
independently by Banach [3] and Sierpiński [14]. The proof given by Banach easily
generalizes to the present case. A proof in the general case can also be found in
Járai’s book [10].

Another extension of Cauchy’s result in the case of S : R → R is that if S is
additive and continuous at a single point, then it is linear, a result due to Darboux
[6] in 1875. We wish to extend this to maps between topological vector spaces over
an ordered field F. Recall that an F-vector space V is topological if it has been
equipped with a topology such that the sum operation V ×V → V and the F-module
structure map F × V → V are continuous. As an example, one can take V to be
a finite-dimensional F-vector space Fk with the product topology. For a u ∈ Fk we
set |u|Fk = maxi=1,...,k |xi|. The sets {u ∈ Fk : |u0−u|Fk < ε}, ε ∈ F, ε > 0 are then
a local base at u0 ∈ Fk.

Theorem 2 (An Extended Darboux’s Theorem for Ordered Fields). Let F be an
ordered field.

If F is Archimedian, then for any topological vector spaces V,W over F every
additive map from V to W which is continuous at a some point is a linear trans-
formation.

If F is non-Archimedian, then for any positive integers m,n there is an additive
continuous map Fm → Fn that is not F-linear. (Here both Fm and Fn are given the
product topologies.)
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Proof. Suppose F is Archimedian and f : V →W is an additive map of topological
F-vector spaces that is continuous at some point. Since the topologies on V and W
are translation invariant, f is in fact continuous everywhere. Moreover, for every
x ∈ V there is a continuous F-linear map l : F → V such that l(1) = x. This
implies that the first part of the theorem for V arbitrary would follow from the
same statement for V = F. So let us assume V = F. Then the map g : F → W
given by g(x) = xf(1) is continuous, F-linear and coincides with f on the dense
subset Q ⊂ F, so by continuity f and g coincide everywhere.

Now suppose that F is not Archimedean, and let m,n be positive integers. Then
F must have some infinitesimal elements other than 0. Let I be the set of all the
m-tuples of infinitesimal elements of F. Observe that both I and V = Fm are vector
spaces over Q. Let B0 be a basis for I over Q. Let e = (1, 0, 0, . . . , 0) ∈ V . Since
e /∈ I, the set B0∪{e} is linearly independent over Q. Extend this set to a basis B of
V over Q. Now let e∗ = (1, 0 . . . , 0) ∈W . Let S be the linear transformation (over
Q) from V to W defined, for all u ∈ V , by S(u) = re∗ where r is the coefficient
of e when u is written as linear combination over B. Then S is certainly additive.
However, were S linear over F we would have S(ae) = aS(e) = ae∗ for all a ∈ F.
But S(ae) = 0 whenever a is an infinitesimal element of F—so S(ae) 6= ae∗ when
a is a nonzero infinitesimal. Therefore S is not linear over F. It remains to show
that S is continuous. As shown above, it is enough to prove it is continuous at
the zero vector. To this end, let ε > 0. We must produce a δ > 0 so that for
all u ∈ Fm, if |u|Fm < δ, then |S(u)|Fn < ε. Take δ to be any infinitesimal with
δ > 0. Then |u|Fm < δ entails that u is an m-tuple of infinitesimals. But then
|S(u)|Fn = |0|Fn < ε. �

Remark 3. In addition to continuity conditions, our Main Theorems have hypothe-
ses concerning the surjectivity or injectivity of the maps involved. The map we
constructed in the proof of the theorem above has neither of these properties.
Nevertheless, we are unable eliminate the Archimedean hypothesis from our Main
Theorems through the use of these additional hypotheses. Indeed, over any non-
Archimedean ordered field on any finite-dimensional vector space there will always
be continuous, additive, bijective maps that are not linear operators. Let S be the
map produced in the proof of Theorem 2. Let V = W = Fn and let a, b ∈ Q. Define
Sa,b : V →W via

Sa,b(u) = aS(u) + bu for all u ∈ V.
Evidently, each Sa,b is continuous and additive. Recalling that S is a linear map,
when Fn is construed as a vector space over Q, it is easy to see that Sc,d is the inverse
of Sa,b where c = −a/(b(a+b)) and d = 1/b, provided b(a+b) 6= 0. So, for example,
S1,1(u) = S(u) + u is invertible and its inverse is S−1/2,1(u) = −1/2S(u) + u. On
the other hand, S = 1/a(Sa,b − bI). Since we know that S is not linear over F, we
see that Sa,b cannot be linear over F either.

In this way, we see that over any non-Archimedean ordered field continuous
additive bijective functions need not be linear.

3.2. Extended forms of the Fundamental Theorem of Affine and Projec-
tive Geometry. Let D be a division ring. We use as our model of DPn, that is the
n-dimensional projective space over D, the space of one-dimensional left subspaces
of Dn+1. If v ∈ Dn+1 with v 6= 0 let 〈v〉 be the one-dimensional left subspace
spanned by v. If A : Dn+1 → Dn+1 is semilinear and nonsingular, then it induces a
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projective map Â : DPn → DPn by

Â〈v〉 = 〈Av〉.
For each n ≥ 2, let L(Dn) (respectively L(DPn)) be the lattice of all flats in Dn
(respectively DPn). The following are special cases of the Fundamental Theorems
of Affine and Projective Geometry.

Theorem 4 (Fundamental Theorem of Affine Geometry). For n ≥ 2, a bijection
T : Dn → Dn induces an automorphism of L(Dn) if and only if T is semiaffine. �

Theorem 5 (Fundamental Theorem of Projective Geometry). For n ≥ 2, If a
bijection T : DPn → DPn induces an automorphism of L(DPn), then there is a

semilinear map A : Dn+1 → Dn+1 such that T is the induced map T = Â. �

This version of the Fundamental Theorem of Projective Geometry follows from
[2, Thm 2.26 p. 88] and the Fundamental Theorem for Affine Geometry can be
derived from the projective version. For a direct proof of the affine version see [4,
pp. 201–202]

A version of the Fundamental Theorem of Affine Geometry where the assump-
tion of the map T being bijective is replaced by T being surjective was proven by
Alexander Chubarev and Iosif Pinelis [5]:

Theorem 6 (Surjective Fundamental Theorem of Affine Geometry). Let D and D′
be division rings such that D has more than two elements. Let A and A′ be affine
spaces of finite dimensions n and n′ over D and D′ respectively and let n′ ≥ n ≥ 2.
If T is a map from A to A′ such that

(i) T is surjective and
(ii) There is some k with 1 ≤ k < n such that T maps each k-flat into a k-flat,

then T is bijective and semiaffine. �

The third stipulation in the affine version of our Main Theorem 2 only insists
that the image of every k-flat is a flat and replaces surjectivity with injectivity.

Theorem 7 (Injective Fundamental Theorem of Affine Geometry). Let D be a
division ring with more than two elements. Let A be the affine space of finite
dimension n > 1 over D. If T is a map from A to A such that

(i) T is injective and
(ii) There is some k with 1 ≤ k < n such that T maps each k-flat to a flat,

then T is bijective and semiaffine.

Remark 8. If D = Z/2 and A, T, n, k are as in Theorem 7, then by [5, Proposition
1] the conclusion of the theorem remains true provided n = 2 or k ≥ 2.

Proposition 9. Let D be a division ring, and n ≥ 2 be a natural number. Let V be
either the affine space or the projective space of dimension n over D. If V is affine,
we assume moreover that D contains more than two elements. If T is a map from
V to V such that

(i) T is injective, and
(ii) there is some k with 1 ≤ k < n such that T maps each k-flat to a flat,

then T is bijective and the map Q 7→ T [Q] is an automorphism of the lattice L(V ).

Lemma 10. Under the hypotheses of Proposition 9, T maps every flat to a flat.
Moreover T is bijective and for every k ≤ n, T maps every k-flat to a k-flat.
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Proof. We leave the “moreover” portion of the lemma to the end of this proof. We
consider three cases.

Case: dimQ = k.
It is one of our hypotheses that T [Q] is a flat.

Case: dimQ < k.
There is a finite set {P0, P2, . . . , Pm−1} of k-flats such that

Q =
⋂
j<m

Pj .

As T is injective, T [Q] =
⋂
j<m T [Pj ]. Each T [Pj ] is a flat and therefore T [Q] is

the intersection of flats and thus is itself a flat.

Case: dimQ > k.
We use the fact that under our assumptions on D and V a subset of V is a flat if
and only if it contains the line through any two of its points. Let y1, y2 ∈ T [Q] be
distinct. Then there are distinct points x1, x2 ∈ Q with y1 = T (x1) and y2 = T (x2).
As dimQ > k ≥ 1 there is a flat P ⊂ Q with dimP = k and x1, x2 ∈ P . The image
T [P ] is a flat and contains the points y1 = T (x1) and y2 = T (x2) and thus contains
the line through y1 and y2. As T [P ] ⊂ T [Q] this shows that T [Q] contains the line
through y1 and y2 and as these are arbitrary points of T [Q], we have that T [Q] is
a flat.

Now let us consider the “moreover” portion of the Lemma. Let ` = dimQ.
There is a strictly increasing chain Q0 ( Q1 ( · · · ( Qn = Dn of flats such that
dimQj = j and Q` = Q. Here the flat Q0 can be any point of Q. Then

T [Q0] ( T [Q1] ( · · · ( T [Qn]

is a strictly increasing chain of flats of Dn, since T is injective. As T [Qj+1] strictly
contains T [Qj ] the inequality dimT [Qj+1] ≥ 1+dimT [Qj ] holds. Thus dimT [Qj ] ≥
j for all j. So that dimT [Qn] ≥ n. But Dn has only one flat with dimension at least
n and that is Dn itself. So dimT [Qn] = n. This is only possible if dimT [Qj ] = j
for all j ≤ n. In particular dimT [Q] = dimT [Q`] = ` = dimQ, as required.
Finally T [Dn] is flat of dimension n and therefore T [Dn] = Dn which shows that T
is surjective and therefore bijective. �

Proof of Proposition 9. By the lemma above and the injectivity of T the map P 7→
T [P ] is an injective map from L(V ) to itself that preserves the lattice operations.
All that remains is to show that this map is surjective. As T [T−1[Q]] = Q it is
enough to show that T−1[Q] is a flat whenever Q is a flat. If dimQ = 0 this is
clear. So assume dimQ ≥ 1. Let x1, x2 ∈ T−1[Q] be distinct and let L be the
line through x1 and x2. Then by the lemma T [L] is a line and, as it contains
the points T (x1) and T (x2) of the flat Q, the line T [L] is contained in Q. Thus
L = T−1[T [L]] ⊆ T−1[Q]. Therefore T−1[Q] contains the line through any two of
its points and hence it is a flat. �

The Injective Fundamental Theorem of Affine Geometry follows from Theorem
4 and Proposition 9. �
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3.3. Extended form of the Fundamental Theorem Projective Geometry.

Theorem 11 (Injective Fundamental Theorem of Projective Geometry). Let D be
a division ring. Let V be the projective space of finite dimension n > 1 over D. If
T is a map from V to V such that

(i) T is injective and
(ii) There is some k with 1 ≤ k < n such that T maps each k-flat to a flat,

then T is bijective and semilinear.

Proof. We apply Proposition 9 and Theorem 5. �

We initially believed there was a projective analog of the Surjective Fundamental
Theorem of Affine Geometry (Theorem 6). Rather surprisingly, it fails even for the
complex projective plane. If K is a field let K〈〈t〉〉 be the field of formal Puiseux
series over K (see Section 5 for a precise description.)

Theorem 12 (Counterexample to Surjective Fundamental Theorem of Projective
Geometry). Let K be an algebraically closed field of characteristic zero such that
K〈〈t〉〉 is isomorphic to K (e.g. the complex numbers). Then for any integer n ≥ 2
there is a map T : KPn → KPn such that

(i) T is surjective,
(ii) each point y ∈ KPn is the image of infinitely points under T and so T is not

injective,
(iii) for all m ∈ {1, 2, . . . , n− 1} and every m-flat P of KPn the image T [P ] is a

m-flat in KPn, and
(iv) for all m ∈ {1, 2, . . . , n− 1} every m-flat of KPn is the image of some m-flat

under T .

The key geometric ideas involved in the proof of this result (cf. Section 5)
are based on ideas from Examples 1 and 2 (pages 377–378) from the paper by
J. F. Rigby [13], however the algebraic details are substantially more complicated.

4. Proof of the main theorems.

Let n ≥ 2 be an integer. Recall that F is an Archimedian ordered field, and K
is a topological division algebra over F, see Section 2, where we also describe the
topologies on Kn and KPn.

4.1. Proof of the affine results. Consider a map T that fulfills the hypotheses
of either of the affine versions of our Main Theorems. Using either the Surjective
or Injective Fundamental Theorems of Affine Geometry, we see that T must be
semiaffine. Thus there is an element b ∈ Kn, an automorphism σ of K and a map
S : Kn → Kn such that

S(x+ y) = S(x) + S(y) for all x, y ∈ Kn

S(cx) = σ(c)S(x) for all x ∈ Kn and c ∈ K
T (x) = S(x) + b for all x ∈ Kn

Since T fulfills hypothesis (2) of our Main Theorems, so must S. Observe that Kn
with the product topology is a topological vector space over F. We conclude using
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Theorems 2 and 1 that S is a linear operator on Kn considered as a vector space
over F. So for every element r ∈ F and for every x ∈ Kn we have

rS(x) = S(rx) = σ(r)S(x).

Because S does not map everything to the zero-vector, we find

r = σ(r) for all r ∈ F.
Therefore σ is an F-automorphism as required.

Finally assume K = F[
√
−1]. Observe that x2 + 1 is irreducible over F and K is

a degree two extension of F that contains both the roots of this polynomial. Thus
K is the splitting field of x2 + 1. It follows that the Galois group of K over F is just
the two element group. So there are only two automorphisms of K that fix each
member of F: the identity map and conjugation. In the first alternative, T will
be an affine map, while in the second alternative T will be conjugate-affine. This
completes the proofs.

4.2. Proof of the projective result. Let T : V → V be a map that satisfies
the hypotheses of projective version of Main Theorem 2. Then by the Injective
Fundamental Theorem of Projective Geometry, we see that T is semilinear. Let H
be any hyperplane in V . Then T [H] is also a hyperplane in V . As the group of
linear automorphisms of V is transitive on the set of hyperplanes, there is a linear
automorphism S of V such that S[T [H]] = H. But then S ◦ T maps V rH onto
itself and V r H is an affine space. Therefore by the affine versions of our Main
Theorems, the restriction (S◦T )

∣∣
VrH : (V rH)→ (V rH) is σ-semiaffine for an F-

automorphism σ of K. As S is linear this implies that T
∣∣
VrH = S−1 ◦ (S ◦T )

∣∣
VrH

is σ-linear. From this it is not hard to check that T is σ-linear as required. If
K = F[

√
−1], then S is either affine or conjugate affine, which implies that T is

either linear or conjugate linear. �

5. Examples

5.1. Algebraic preliminaries on Puiseux series. Let K be a field of character-
istic zero. For any variable x we denote by K((x)) the field of formal Laurent series
in x. Thus if f(x) ∈ K((x)) is not the zero element, there is an unique integer k
such that f(x) is of the form

f(x) =

∞∑
j=k

fjx
j

where fj ∈ K and fk 6= 0. The integer k is the order f(x) and is denoted by
ord(f(x)). For completeness we define ord(0) = +∞. In analogy with complex
analysis the order of f(x) can be thought of as order of the zero of f(x) at the
origin, with the usual convention that when ord(f(x)) is negative then the origin
is a pole. If ord(f(x)) ≥ 0, then we can evaluate f(x) at x = 0 giving f(0) = f0,
the coefficient of 1 in the series f(x) =

∑
j fjx

j . For a nonzero f(x) ∈ K((x))

the coefficient of xord(f(x)) is the lead coefficient of f(x) and we will denote it
by lead(f(x)). Set lead(0) = 0. With these definitions it is not hard to check for
f(x), g(x) ∈ K((x)) that

ord(f(x)g(x)) = ord(f(x)) + ord(g(x)), (3)

lead(f(x)g(x)) = lead(f(x)) lead(g(x)). (4)
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If K[[x]] is the ring of formal power series over K, then K((x)) is the ring of fractions
of K[[x]]. Note also that K[[x]] is a principal ideal domain (the ideals are all of the
form (xm) for some nonnegative integer m).

Let n be a positive integer. A variant on the above is K((x1/n)), the field of
formal Laurent series in x1/n. In this case the order of a nonzero f(x) ∈ K((x1/n))
is still defined as the smallest exponent of a nonzero term in the sum f(x) =∑
r∈ 1

nZ frx
r where 1

nZ = {k/n : k ∈ Z}. Thus in this case ord(f(x)) is a ratio-

nal number of the form k/n where k is an integer. Likewise the lead coefficient,
lead(f(x)), is still defined and if we still use the convention that ord(0) = +∞
and lead(0) = 0, the formulas (3) and (4) still hold. Also K((x1/n)) is the ring of
fractions of K[[x1/n]] and K[[x1/n]] is a principal ideal domain.

Finally the field of formal Puiseux series over K is the union

K〈〈x〉〉 =

∞⋃
n=1

K((x1/n)).

For f(x) ∈ K〈〈x〉〉 the ord(f(x)) and lead(f(x)) are defined and satisfy (3) and (4).
If ord(f(x)) ≥ 0 then the evaluation, f(0), is defined in the natural way. Evaluation
and the lead coefficient are related as follows. If ord(f(x)) = k then f(x) is of the

form f(x) = xkf̃(x) where ord(f̃(x)) = 0. Then

lead(f(x)) = f̃(0).

We will need the following result on the algebraic closure of the field K((x)).

Theorem 13 (The Newton-Puiseux Theorem). If K is an algebraically closed field
of characteristic zero, then K〈〈x〉〉 is an algebraic closure of K((x)). �

See e.g. [16, pp. 98–102] for a proof. Newton’s and Puiseux’s original versions
can be found in [11], [12].

5.2. Construction of the examples. Let F be a field. Then in this section we
use the notation Pn(F) for the projective space FPn realized as set of points with
homogeneous coordinates [a0 : a1 : · · · : an]. If a = (a0, a1, . . . , an) ∈ Fn+1r{0} let
[a] be the point in Pn(F) with homogeneous coordinates [a0 : a1 : · · · : an]. Then
for a,b ∈ Fn+1 r {0} we have [a] = [b] if and only if a = λb for some nonzero
λ ∈ F.

Let a(x) = (a0(x), a1(x), . . . , an(x)) be an (n+1)-tuple of elements from K〈〈x〉〉.
We extend the definition of ord to such tuples by

ord(a(x)) = min
0≤j≤n

ord(aj(x)).

As in the case of elements of K〈〈x〉〉 if ord(a(x)) ≥ 0, we can evaluate a(x) at zero
by

a(x) = (a0(0), a1(0), . . . , an(0)).

If a(x) ∈ K〈〈x〉〉n+1 r {0}, write

a(x) = xord(a(x))ã(x)

where ord(ã(x)) = 0. As ã(x) has order zero, the evaluation ã(0) ∈ Kn+1 satisfies
ã(0) 6= 0. Define the lead coefficient of a(x) by

lead(a(x)) = ã(0).

Set lead(0) = 0. The proof of the following is left to the reader.
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Lemma 14. If λ(x) ∈ K〈〈x〉〉 and a(x) = (a0(x), a1(x), . . . , an(x)) is an (n + 1)-
tuple of elements from K〈〈x〉〉, then the equations

ord(λ(x)a(x)) = ord(λ(x)) + ord(a(x))

lead(λ(x)a(x)) = lead(λ(x)) lead(a(x))

hold. �

Definition 15. If K is a field of characteristic zero and n a positive integer, the
lead coefficient map is the function L : Pn(K〈〈x〉〉)→ Pn(K) given by

L([a(x)]) = [lead(a(x))]

(This is well defined by Lemma 14). �

Proposition 16. Let K be a field of characteristic zero, and let n be an integer
≥ 2. Then the lead coefficient map L : Pn(K〈〈x〉〉) → Pn(K) is surjective. Any
[b] ∈ Pn(K) is the image under L of infinitely many elements of Pn(K〈〈x〉〉) and
thus L is not injective. For for every m-flat, P , of Pn(K〈〈x〉〉), the image L[P ] is
an m-flat in Pn(K). Moreover every m-flat in Pn(K) is the image under L of some
m-flat of Pn(K〈〈x〉〉).

Proof. Let [a] = [(a0, a1, . . . , an)] ∈ Pn(K). Choose any b0(x), b1(x), . . . , bn(x) ∈
K〈〈x〉〉 such that ord(bj(x)) > 0 for j ∈ {0, 1, . . . , n}. Then

L([(a0 + b0(x), a1 + b1(x), . . . , an + bn(x))]) = [a].

Thus L is surjective. There are infinitely many choices for b0(x), b1(x), . . . , bn(x),
thus any point of Pn(K) is the image of infinitely many points of Pn(K〈〈x〉〉).

Every m-dimensional projective subspace of P(K〈〈x〉〉) is of the form P(V ) for
an (m+ 1)-dimensional vector subspace V of K〈〈x〉〉n+1.

Claim 1. The subspace V has a basis v0(x),v1(x), . . . ,vm(x) such that each
element of the basis has ord(vj(x)) = 0 and the vectors v0(0),v1(0), . . . ,vm(0) are
linearly independent in Kn+1.

To see this start with any basis a0(x),a1(x), . . . ,am(x) of V . If need be, we
can replace a0(x) by x− ord(a0(x))a0(x) and assume that a0(x) has ord(a0(x)) = 0.
Form the matrix A(x) that has a0(x),a1(x), . . . ,am(x) as rows:

A(x) =


a0(x)
a1(x)

...
am(x)

 =


a00(x) a01(x) · · · a0n(x)
a10(x) a11(x) · · · a1n(x)

...
...

. . .
...

am0(x) am0(x) · · · amn(x)

 .
By doing a permutation, σ0, of the columns we can assume that ord(a00(x)) = 0.
Multiplying the first row by a00(x)−1 we can assume that a00(x) = 1. Then by
doing elementary row operations (replacing aj(x) by aj(x)− aj0(x)a0(x)) we get a
matrix where all the elements of the first column other than the first element are
zero:

A1(x) =


1 b01(x) · · · b0n(x)
0 b11(x) · · · b1n(x)
...

...
. . .

...
0 bm0(x) · · · bmn(x)


and all the elements of the first row have order at least zero. Because of the
permutation σ0 the rows of this matrix need not be in the subspace V , but applying
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the inverse σ−10 to the columns of A1(x) leads to a matrix that differs from the
original matrix A(x) by the application of elementary row operations and therefore
its rows will be a basis of V .

Continuing in this manner (using column permutations σ1, · · · , σm−1 and ele-
mentary row operations) A(x) can be reduced to the form

Am(x) =


1 ∗ ∗ ∗ ∗ · · · ∗
0 1 ∗ ∗ ∗ · · · ∗
...

...
. . .

...
...

. . .
...

0 0 · · · 1 ∗ · · · ∗


where all the elements represented by ∗ have order at least zero. By applying the
permutation (σm−1 · · ·σ1σ0)−1 to the columns of this matrix we get a matrix A′(x)
that is derived from the original matrix by elementary row operations and therefore
the rows of A′(x) are a basis of V . The rows of Am(0) are clearly linearly indepen-
dent and A′(0) differs from Am(0) a permutation of the columns and therefore the
rows of A′(0) are linearly independent. Thus if v0(x),v1(x), . . . ,vm(x) are the rows
of A′(x), then they are a basis of V such that v0(0),v1(0), . . . ,vm(0) are linearly
independent in Kn+1, which verifies the claim.

Dually, the vector subspace V of Kn+1 could be given as the solution set of
n−m linearly independent linear equations

V =
{

a(x) : `i(a(x)) = 0 for i ∈ {1, 2, . . . , n−m}
}

where `i is of the form

`i(a(x)) = ci0(x)a0(x) + ci1(x)a1(x) + · · ·+ cin(x)an(x). (5)

Claim 2. It is possible to choose the linear functions such that all the coefficients
have order at least zero and such that the matrix [cij(0)] has rank n−m over K and
therefore the linear functionals on Kn−1 defined by `′i(a) = ci0(0)a0 + ci1(0)a1 +
· · ·+ cin(0)an are linearly independent over K.

The proof of this claim is almost identical to the proof of Claim 1. Form the
matrix C(x) = [cij(x)] and perform the same elementary row operations as in the
proof of the first claim to get a matrix C ′(x) such that the rows of C ′(x) have the
same span as those of C(x) and such that C ′(0) has linearly independent rows in
Kn+1. Then using the i-th row of C ′(x) as the coefficients of `i(x) completes the
argument.

Returning to the proof of Proposition 16, let P = P(V ) be anm-flat in P(K〈〈x〉〉n+1).
Choose a basis v0(x),v1(x), . . . ,vm(x) as in Claim 1. Let V ′ be the subspace of
Kn+1 with basis v0(0),v1(0), . . . ,vm(0). Then a chase through the definition of L
shows

P(V ′) ⊆ L[P ] = L[P(V )].

For the reverse inclusion we let `1, `2, . . . , `n−m be the linear functionals on
K〈〈x〉〉n+1 given by Claim 2 and let [a(x)] ∈ P(V ). Without loss of generality
assume ord a(x) = 0. Then a(0) is defined and a(0) 6= 0. Then a(x) ∈ V and thus
`i(a(x)) = 0. Let `′i be the linear functional on Kn+1 obtained by evaluating the
coefficients of `i at x = 0 as in Claim 2. Then Claim 2 yields that `′1, `

′
2, . . . , `

′
n−m

are linearly independent linear functionals on Kn+1. Evaluating `i(a(x)) = 0 at
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x = 0 shows `′i(a(0)) = 0. Therefore a(0) ∈
⋂n−m
i=1 ker(`′i). Set V ′′ =

⋂n−m
i=1 ker(`′i).

As [a(x)] was any element of P(V ) this yields

P(V ′) ⊆ L[P ] = L[P(V )] ⊆ P(V ′′).

Comparing dimensions shows V ′ = V ′′ and therefore L[P ] = P(V ′) which shows
L[P ] is an m-flat of P(Kn+1).

Finally let P ′ = P(V ′) be an m-flat in P(Kn+1) and let v0,v1, . . . ,vm be a basis
of V ′. We can view v0,v1, . . . ,vm as elements of K〈〈x〉〉n+1 and let V be the span
of these vectors in K〈〈x〉〉n+1. Then P ′ is the image under L of P = P(V ). Thus
every m-flat of P(Kn+1) is the image of an m-flat of P(K〈〈x〉〉n+1). �

Proof of Theorem 12. Theorem 12 follows immediately from Proposition 16.
�

5.2.1. Proof of Main Theorem 3. To apply Theorem 12 we need to give conditions
that insure that K and K〈〈x〉〉 are isomorphic. If K is a field, we denote the
transcendence degree of K over its prime subfield by trdegK. Note that if trdegK
is infinite, then it is equal the cardinality |K| of K. A basic result in the theory
of transcendental field extensions is the theorem of Steinitz that states that two
algebraically closed fields K1,K2 are isomorphic if and only if charK1 = charK2

and trdegK1 = trdegK2 (cf. [15]).
Let K be an algebraically closed of characteristic zero that has infinite transcen-

dence degree over the rationals. We note that the set K((x)) of formal Laurent
series has cardinality |K((x))| = |K|ℵ0 . But K〈〈x〉〉 =

⋃∞
n=1 K((x1/n)), and thus

|K〈〈x〉〉| = ℵ0 · |K|ℵ0 = |K|ℵ0 . So if |K|ℵ0 = |K|, then

trdeg(K〈〈x〉〉) = |K〈〈x〉〉| = |K|ℵ0 = |K| = trdeg(K),

which implies that K and K〈〈x〉〉 are isomorphic.
As an example, suppose |K| = λµ where λ and µ are cardinals and µ is infinite.

Note that this includes the case K = C. Then we have

|K|ℵ0 = (λµ)ℵ0 = λµ·ℵ0 = λµ = |K|.

Summarizing:

Proposition 17. Let K be an algebraically closed field of characteristic zero. Then
the fields K and K〈〈x〉〉 are isomorphic if and only if |K|ℵ0 = |K|. The latter
condition is satisfied for K = C or, more generally, if |K| = λµ for some cardinals
λ, µ such that µ is infinite. �

Main Theorem 3 now follows from Proposition 17 and Theorem 12.

Remark 18. There exist algebraically closed fields of characteristic zero such that
the cardinality of the field of formal Puiseux series is strictly larger than the car-
dinality of the field itself. One such example is Q, the algebraic closure of Q. To
construct other examples recall that the cofinality of a cardinal κ is the least car-
dinality of a cofinal subset of the set [0, κ) of cardinals. Let α be a countable limit
ordinal. Take β to be an arbitrary ordinal and set κ = ℵβ+α. The cofinality of κ is
ℵ0. It follows from König’s inequality that κℵ0 > κ, see e.g. [9, Theorem 1.6.9]. So
if we take K to be an algebraically closed field of characteristic zero with trdeg = κ,
we get |K〈〈x〉〉| > |K|.
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