You must show your work to get full credit.

1. Let h be a differentiable function of x and y defined on an open set U. Give the limit definition of the following:

(a)
$$\frac{\partial h}{\partial x}(x,y) =$$

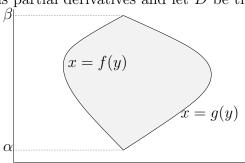
(b)
$$\frac{\partial h}{\partial y}(x,y) =$$

2. Let f(z) be a complex valued function defined on a open set U of \mathbb{C} . Give the limit definition of the *complex derivative* $f'(z_0)$.

$$f'(z_0) = .$$

- **3.** Let f(z) = u + iv be defined on the open set U of \mathbb{C} .
 - (a) Define what it means for the **Cauchy-Riemann** equations to hold at $z \in U$.
 - (b) Prove if f(z) is complex differentiable at z_0 , then the Cauchy-Riemann equations hold at z_0 .

4. Let Q(x,y) have continuous partial derivatives and let D be the domain below:



Prove $\int_{\partial D} Q(x,y) dy = \iint_{D} Q_{x}(x,y) dx dy$.

5. Use Green's formula

$$\int_{\partial D} P \, dx + Q \, dy = \iint_{D} \left(-P_y + Q_x \right) \, dx \, dy$$

to show that if a function f = u + iv satisfies the Cauchy-Riemann equation on a bounded open set U with nice boundary that

$$\int_{\partial D} f(z) \, dz = 0.$$