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The material here corresponds to parts of Chaper VII Rosenlicht.

1. Basic definitions and results about series.

We now wish to make sense out of infinite sums
∞∑
k=1

= a1 + a2 + a3 + · · ·

Definition 1. Let 〈ak〉∞k=n0
be a sequence of real numbers. The correspond-

ing infinite series is (or just series) is the sum
∞∑

k=k0

ak = ak0 + ak0+1 + ak0+2 + · · · .

The n-th partial sum of the series is

An = an0 + an0+1 + an0+2 + · · ·+ an−1 + an =
n∑

k=n0

ak.

We say the series converges and has sum A iff

lim
n→∞

An = A.

If
∑∞

k=1 ak does not converge, it diverges. �

To make notation easier, when proving results about series we will usually
let n0 = 0 or n0 = 1.

Here is a result that follows at once from the facts about limits of se-
quences.

Theorem 2. If
∑∞

n=1 ak and
∑∞

k=1 bk both converge, then for any constants
c1 and c2 the series

∑∞
k=1 (c1aak + c2bk) also converges and

∞∑
k=1

(c1aak + c2bk) = c1

∞∑
n=1

ak + c2

∞∑
n=1

bk
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Proof. Let

An = (a1 + · · · an)

Bn = (b1 + · · · bn)

Cn =
(
(c1a1 + c2b1) + · · ·+ (c1an + c2an)

)
be the partial sums of the series. We are given that

lim
n→∞

An = A, lim
n→∞

Bn = B

exist and want to show limn→∞Cn = c1A+ c2B. Note

Cn =
(
(c1a1 + c2b1) + · · ·+ (c1an + c2an)

)
= c1(a1 + · · · an) + c2(b1 + · · · bn)

= c1An + c2Bn

and therefore

lim
n→∞

Cn = lim
n→∞

(c1An + c2Bn) = c1A+ c2B

as required. �

Before going on we note that for any series
∑∞

k=1 ak with partial sums
An =

∑n
k=1 we have the elementary relation

An = An−1 + an,

or equivalently
an = An −An−1.

This will come up several times in what follows starting with the following:

Theorem 3. If the series
∑n

k=1 ak converges, then

lim
n→∞

an = 0.

Proof. If An =
∑n

k=1 ak then limn→∞An = A exists as the series converges.
But then also limn→∞An−1 = A and so

lim
n→∞

an = lim
n→∞

(An −An−1) = A−A = 0.

�

Remark 4. Often the previous theorem is used in its contrapositive form:
If limk→∞ ak 6= 0, then

∑∞
k=1 ak diverges. From this it is not hard to give

lots of examples of series that do not converge. For example none of the
following converge

∞∑
k=1

(−1)k,

∞∑
k=1

sin(k),

∞∑
n=1

n2 − 2

2n2 + 5
.

�

Proposition 5. The series
∑∞

k=1 ak converges if and only if for all ε > 0
there is a N such that

N ≤ m < n =⇒ |am+1 + am+2 · · ·+ an| < ε.
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Problem 1. Prove this. Hint: What is the Cauchy condition for the se-
quence 〈An〉∞n=1 of partial sums? �

Proposition 6. Let
∑∞

k=1 ak and
∑∞

k=1 bk be two series such that ak = bk
except for a finite number of values k. Then either they both converge or
both diverge. (An informal way so state this is that changing a finite number
of terms of a series does not effect whether it converges or diverges.)

Proof. By the hypothesis there is an n0 such that such that

ak = bk for all k ≥ n0.

If n ≥ n0 then

Bn = Bn0 +

n∑
k=n0+1

bk

= Bn0 +

n∑
k=n0+1

ak (as ak = bk when k ≥ n0)

= Bn0 −An0 +An0 +

n∑
k=n0+1

ak

= (Bn0 −An0) +An.

Letting c = Bn0 − An0 , which is a constant, we have that Bn = An + c for
n ≥ n0. Thus the sequences 〈An〉∞n=1 and 〈Bn〉∞n=1 either both converge or
both diverge. �

Lemma 7. If |r| 6= 1 then

a+ ar + ar2 + · · · arn =
n∑

k=0

ark =
a− arn−1

1− r
.

Proof. Let Sn = a+ ar + ar2 + · · · arn. Then

(1− r)Sn = a+ ar + ar2 + · · ·+ arn − r(a+ ar + ar2 + · · ·+ arn)

= a+ ar + ar2 + · · · arn − ar − ar2 − · · · − arn − arn+1

= a− arn+1.

As r 6= 1 we can divide by (1− r) to get the desired result. �

Lemma 8. If |r| < 1 then

lim
n→∞

|r|n = 0.

Proof. Let ε > 0 and set N = ln(ε)/ ln(|r|). Then if n > N it is not hard to
check

∣∣|r|n − 0
∣∣ = |r|n < ε. �

Here one of the most basic examples of series. Many results about series
involve comparison to a geometric series.
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Theorem 9 (Infinite Geometric Series). Let a, r be real numbers with a 6= 0.
Then the series

a+ ar + ar2 + · · · =
∞∑
k=0

ark

converges if and only if |r| < 1 in which case its sum is

∞∑
k=0

ark =
a

1− r
.

Proof. If |r| ≥ 1 then the n-th term arn satisfies |arn| ≥ |a| > 0 and so
limn→∞ ar

n 6= 0 and thus the series diverges.
Now assume |r| < 1. We have seem in Lemma 7 that the nth partial sum

is

Sn =
a− arn+1

1− r
.

Now by the last lemma,

lim
n→∞

Sn = lim
n→∞

a− arn+1

1− r
=
a− a · 0

1− r
=

a

1− r
as required. �

2. Series with positive terms.

Theorem 10. Let
∑∞

k=1 ak be a series with ak ≥ 0 for all k. Then
∑∞

k=1 ak
converges if and only if the sequence, 〈An〉∞n=1 (with An = a1 + · · · an) of
partial sums is bounded.

Proof. If
∑∞

k=1 ak converges, then limn→∞An = A exists by definition. But
a convergent sequence is bounded. If 〈An〉∞n=1 is bounded, then An+1 =
An + an+1 ≥ An so the series is monotone increasing. But a bounded
monotone sequence is convergent. �

Remark 11. When talking about series,
∑∞

k=1 ak, of non-negative terms we
will use the following suggestive notation.

∞∑
k=1

ak <∞ ⇐⇒ The series converges

∞∑
k=1

ak =∞ ⇐⇒ The series series diverges.

This notation is not appropriate when talking about series with terms of
mixed signs. For example the series

∑∞
k=1(−1)k+1 has bounded partial

sums, but is not convergent. �
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3. Tests for the convergence of series with monotone terms.

In general it is easier to understand the convergence of series with mono-
tone decreasing terms. As a first example.

Theorem 12 (Cauchy Condensation Test). If 〈ak〉∞k=1 is a sequence of non-
negative numbers that are monotone decreasing, then

∞∑
k=1

ak <∞

if and only if
∞∑
k=0

2ka2k <∞.

Proof. Let the partial sums of the two series be

An =

n∑
k=1

ak, Bn =

n∑
k=0

2ka2k .

We will show

A2n+1−1 ≤ Bn(1)

Bn ≤ 2A2n .(2)

If these hold the result is easy. If
∑∞

k=0 2ka2k < ∞ then for any positive
integer m choose n such that m ≤ 2n+1 − 1. By (1),

Am ≤ A2n+1−1 ≤ Bn ≤
∞∑
k=0

2ka2k <∞

and therefore the partial sums of
∑∞

k=1 ak are bounded above and thus∑∞
k=0 ak <∞.
Conversely if

∑∞
k=1 ak <∞ then for any positive integer n we use (2) to

get

Bn ≤ 2A2n ≤ 2

∞∑
k=1

ak <∞

which shows the partial sums of
∑∞

k=0 2ka2k are bounded above and thus∑∞
k=0 2ka2k converges.
We now prove (1). Using that the terms are monotone decreasing,

A2n+1−1 = a1 + (a2 + a3)︸ ︷︷ ︸
21 terms

+ (a4 + · · ·+ a7)︸ ︷︷ ︸
22 terms

+ · · ·+ (a2n + · · ·+ a2n+1−1)︸ ︷︷ ︸
2n terms

≤ a1 + (a2 + a2)︸ ︷︷ ︸
21 terms

+ (a4 + · · ·+ a4)︸ ︷︷ ︸
22 terms

+ · · ·+ (a2n + · · ·+ a2n)︸ ︷︷ ︸
2n terms

= a1 + 22a22 + 23a23 + · · ·+ 2na2n

= Bn.
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The proof (2) is similar

A2n = a1 + a2 + (a3 + a4)︸ ︷︷ ︸
21 terms

+ (a5 + · · · a8)︸ ︷︷ ︸
22 terms

+ · · ·+ (a2n−1+1 + · · ·+ a2n)︸ ︷︷ ︸
2n−1 terms

≥ a1 + a2 + (a4 + a4)︸ ︷︷ ︸
21 terms

+ (a8 + · · · a8)︸ ︷︷ ︸
22 terms

+ · · ·+ (a2n + · · ·+ a2n)︸ ︷︷ ︸
2n−1 terms

= a1 + a2 + 21a22 + 22a23 + · · ·+ 2n−1a2n

= 2−1a1 + 2−1a1 + a2 + 21a22 + 22a23 + · · ·+ 2n−1a2n

= 2−1a1 + 2−1
(
20a1 + 21a2 + 22a22 + 23a23 + · · ·+ 2na2n

)
= 2−1a1 + 2−1Bn

≥ 1

2
Bn.

Multiplication by 2 completes the proof. �

Theorem 13. For any real number p > 0 the series
∞∑
k=1

1

kp

converges if and only if p > 1.

Proof. We use the Cauchy-Condensation Test, which applies as the terms of
the series are decreasing. The given series converges if and only if

∞∑
k=1

2k
1

(2k)p
=
∞∑
k=1

(
2

2p

)k

converges. This is a geometric series with ratio

r =
2

2p
.

Therefore the series converges if and only if r = 2/2p < 1, that is if and only
if p > 1. �

Anther method of dealing with series with monotone terms is by compar-
ison with an integral. Let us start with an example. Let f(x) be monotone
decreasing on the interval [0, 6] and let

ak = f(k) for 1 ≤ k ≤ 6

and

An = a1 + · · ·+ an = f(1) + · · ·+ f(n).

Then, see Figure 1, we can compare the integral
∫ 6
1 f(x) dx with some of the

Riemann sums for the partition P = {1, 2, 3, 4, 5, 6} to get∫ 6

1
f(x) dx ≤ A5 ≤ A6 ≤ f(1) +

∫ 6

1
f(x) dx.
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1 2 3 4 5 6

Graph of y = f(x) on [1, 6].

Figure 1. The area under the tall (with red tops) rectangles
is A5 = f(1) + f(2) + f(3) + f(4) + f(5). The area under
the short (with green tops) rectangles is A6 − f(1) = f(2) +
f(3) + f(4) + f(5) + f(6). The area of the integral is clearly
in between these two areas and therefore

A6 − f(1) ≤
∫ 6

1
f(x) dx ≤ A5.

This can be rearranged to give∫ 6

1
f(x) dx ≤ A5 ≤ A6 ≤ f(1) +

∫ 6

1
f(x) dx = a1 +

∫ 6

1
f(x) dx

which is a bit more aesthetic.

We could, and since this is a mathematics class, should be a bit more
formal. Note that on any interval [k, k+1] we have, because f is decreasing,
that

f(k) ≥ f(x) ≥ f(k + 1).

Then integration over [k, k + 1] and using that
∫ k+1
k f(k) dx = f(k) and∫ k+1

k f(k + 1) dx = f(k + 1)

f(k) ≥
∫ k+1

k
f(x) dx ≥ f(k + 1).

This can be summed it two ways to get∫ 6

1
f(x) dx =

5∑
k=1

∫ k+1

k
f(x) dx ≤

5∑
k=1

f(k) = A5
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and

A6 − a1 =

6∑
k=2

f(k) ≤
5∑

k=1

∫ k+1

k
f(x) dx =

∫ 6

1
f(x) dx.

Of course there is nothing special about n = 6 in this argument.

Proposition 14. Let f : [1,∞) → [0,∞) be a monotone decreasing non-
negative function. Let ak = f(k) and let

An =
n∑

k=1

ak

be the n-th partial sum of the series
∑∞

k=1 ak. Then∫ n

1
f(x) dx ≤ An ≤ f(1) +

∫ n

1
f(x) dx.

Problem 2. Use a variation of the argument given for n = 6 to prove
this. �

Theorem 15 (The Integral Test). Let f : [1,∞) → [0,∞) be a monotone
decreasing non-negative function. Let ak = f(k) and let

An =

n∑
k=1

ak

be the n-th partial sum of the series
∑∞

k=1 ak. Then

∞∑
k=1

ak <∞ ⇐⇒ lim
n→∞

∫ n

1
f(x) dx exists and is finite.

(Note that
〈∫ n

1 f(x) dx
〉∞
n=1

is a monotone increasing sequence, thus the limit
exists, but might be +∞.)

Problem 3. Prove this. �

Problem 4. Use the Integral Test to give anther proof of Theorem 13. �

Problem 5. Use the Integral Test to show
∞∑
k=2

1

n(ln(n))p

converges if and only if p > 1. �

4. Comparison tests.

Proposition 16. Let Let
∑∞

k=1 ak and
∑∞

k=1 bk be two series of non-negative
terms. Assume there is a constant C > 0 such that

ak ≤ Cbk
for all k. Then
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(a) If

∞∑
k=1

bk converges, so does

∞∑
k=1

ak.

(b) If

∞∑
k=1

ak diverges, so does

∞∑
k=1

bk.

Problem 6. Prove this. Hint: Consider partial sums. �

Theorem 17 (Limit Comparison Test). Let
∑∞

k=1 ak and
∑∞

k=1 bk be two
series of positive terms. Assume that

L = lim
k→∞

ak
bk

exists. Then

(a)
∞∑
k=1

bk <∞ implies
∞∑
k=1

ak <∞

(b) If L 6= 0 and
∞∑
k=1

ak =∞, then
∞∑
k=1

bk =∞.

Often the following special case is enough.

Corollary 18. Let
∑∞

k=1 ak and
∑∞

k=1 bk be two series of positive terms.
Assume that

L = lim
k→∞

ak
bk

exists and L 6= 0. Then
∞∑
k=1

ak converges if and only if
∞∑
k=1

bk converges. �

Problem 7. Prove Theorem 17. Hint: Recall that a convergent sequence
is bounded. Thus 〈ak/bk〉∞k=1 is bounded and therefore there is a constant
C such that ak/bk ≤ C. Thus Proposition 16 applies.

Here some applications of these results.

Example 19. Does the series
∑∞

k=1
k3+2k2+7
3k5+2

converge? Let this series be∑∞
k=1 ak and let

∑∞
k=1 bn be the p-series

∑∞
k=1

1
k2

. Then it is not hard to
check that

lim
k→∞

ak
bk

=
1

3
.

Therefore, by Corollary 18,
∑∞

k=1 ak converges if and only if
∑∞

k=1 bk con-
verges. But

∑∞
k=1 bk is a p series with p = 2 > 1 and so both series con-

verge. �

Example 20. Does the series
∑∞

k=1 =
∑∞

k=1

(
3
√
n+ 5− 3

√
n− 2

)
converge?

Let f(x) = 3
√
x = x1/3. Then for n > 2 by the mean value theorem there is

a ξn between −2 and 5 such that

an = f(n+ 5)− f(n− 2) = f ′(n+ ξn)((n+ 5)− (n− 2)) =
1

3
(n+ ξn)−2/37.
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Therefore if
∑∞

k=1 bk is the divergent p-series
∑∞

k=1 1/n2/3 we have

lim
k→∞

ak
bk

=
7

3
.

So
∑∞

k=1 ak diverges by limit comparison to
∑∞

k=1 bk.

Problem 8. For practice in these ideas do Problems 10 and 11 on Page 161
of the text. Hint: For Problem 11 it might help to notice that

1

n
− 1

n+ x
=

x

n(n+ x)
and lim

n→∞

1/n2

1/(n(n+ x))
= 1.

�

5. The root and ratio tests

These are basically just limit comparisons with a geometric series. To get
started here is a version of the comparison were we only worry about the
comparison for large values.

Lemma 21. Let
∑∞

k=1 ak and
∑∞

k=1 bk be series of positive terms. Assume
there is an N such that

ak ≤ bk for all k > N

and that
∑∞

k=1 bk <∞. Then
∑∞

k=1 ak <∞.

Proof. Let An and Bn be the partial sums of these series. Let

C1 = max{An : 1 ≤ n ≤ N}.

If n > N then

An = (a1 + · · · aN ) + (aN+1 + · · ·+ an)

≤ (a1 + · · · aN ) + (bN+1 + · · ·+ bn)

= (a1 + · · · aN )− (b1 + · · ·+ bN ) + (b1 + · · ·+ bN + bN+1 + · · ·+ bn)

= AN −BN +Bn

≤ AN −BN +

∞∑
k=1

bk <∞.

Therefore if

C = max

{
C1, AN −BN +

∞∑
k=1

bk

}
we have

An ≤ C
for all n. Thus the partial sums of

∑∞
k=1 ak are bounded which implies that

it is convergent. �

The following is a dressed up version of doing a comparison with a geo-
metric series.
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Theorem 22 (Root Test). Let
∑∞

k=1 ak be a series of positive terms and
assume the limit

ρ := lim
k→∞

(ak)1/k.

exists.

(a) If ρ < 1 then the series converges.
(b) If ρ > 1 then the series diverges.

Problem 9. Prove this. Hint: For (a) let r be any number such that

ρ < r < 1. Then ρ = limk→∞(ak)1/k < r implies there is a N such that

k > N =⇒ (ak)1/k < r.

Then

ak < rk for all k > N.

Now consider Lemma 21 and Theorem 9.
For (b) show that if ρ > 1 then limk→∞ ak 6= 0. �

Here is anther dressed up version of comparison with a geometric series.

Theorem 23 (Ratio Test). Let
∑∞

k=1 ak be a series of positive terms assume
the limit

ρ := lim
k→∞

ak+1

ak

exists.

(a) If ρ < 1, then the series converges.
(b) If ρ > 1, then the series diverges.

Problem 10. Prove this. Hint: For (a) let r be a number such that ρ <
r < 1. Then, by the definition of lim, there is a N such that

k > N =⇒ ak+1

ak
< r.

Thus for k > N we have

ak = aN+1
aN+2

aN+1

aN+3

aN+2
· · · ak−1

ak−2

ak
ak−1

= (aN+1)

k−1∏
j=N+1

aj+1

aj
< aN+1r

k−N−1.

The series

∞∑
k=1

(aN+1)r
k−N−1 =

∞∑
k=1

(
aN+1r

−N−1) rk =

∞∑
k=1

Crk

(where C =
(
aN+1r

−N−1) ) is a convergent geometric series. You should
now be able to do a comparison by use of Lemma 21.

For (b) show ρ > 1 implies limk→∞ ak 6= 0. �
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6. Absolutely and conditional convergent series.

Definition 24. The series
∑∞

k=1 ak is absolutely convergent iff the series
of absolute values

∑∞
k=1 |ak| is convergent. �

Theorem 25. If
∑∞

k=1 ak is absolutely convergent, then it is convergent and∣∣∣∣∣
∞∑
k=1

ak

∣∣∣∣∣ ≤
∞∑
k=1

|ak|.

Problem 11. Prove this. Hint: Proposition 5 and the triangle inequality
applied to partial sums. �

This, together with Proposition 16 implies

Proposition 26. Let
∑∞

k=1 ak and
∑∞

k=1 bk be series with |ak| ≤ Cbk for
some positive constant C. Assume

∑∞
k=1 bk converges. Then

∑∞
k=1 ak con-

verges absolutely. �

Example 27. The last proposition implies all the following

∞∑
k=1

cos(k)

k2
,

∞∑
k=1

(−1)k

n2n
,

∞∑
k=1

3 + (−1)k

(k + 1) ln2(k + 1)
.

converge absolutely. �

Definition 28. The series
∑∞

k=1 ak is conditional convergent iff
∑∞

k=1 ak
converges, but

∑∞
k=1 |ak| =∞. �

The following gives one of the main methods of producing conditional
convergent series.

Theorem 29. Let 〈ak〉∞k=1 be a sequence of real numbers with

(a) ak ≥ ak+1 (that is it is monotone decreasing),
(b) limk→∞ ak = 0.

Then
∞∑
k=1

(−1)k+1ak = a1 − a2 + a3 − a4 + · · ·

converges. If A =
∑∞

k=1(−1)k+1ak is the sum and An =
∑n

k=1 ak is the n-th
partial sum then

|A−An| ≤ an+1.

That is the error at stopping at the n-th term is at most the (n+ 1)-st term.

Problem 12. Prove this. Hint: Note

A3 = A1 − a2 + a3 = A1 − (a2 − a3) ≤ A1

as a2 ≥ a3. Likewise

A5 = A3 − a4 + a5 = A3 − (a4 − a5) ≤ A3
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as a4 ≥ a5. In general

A2m+3 = A2m+1 − (a2m − a2m+1) ≤ A2m+1

Give an analogous argument to show

A2m+2 = A2m + (a2m+1 − a2m+2) ≥ A2m.

Now use this to show that if ` ≥ n then for n odd

An+1 ≤ A` ≤ An

and for n even
An ≤ A` ≤ An+1.

Therefore if ` ≥ n the partial sum A` is between An and An+1. Also show
|An+1 −An| = an+1. It should not be hard to finish from here. �

Problem 13. Show that if 0 < p ≤ 1 that the series
∞∑
k=1

(−1)k

kp

is conditional convergent. �

Therefore when 0 < p ≤ 1 (which implies
∑∞

k=1
1
kp diverges) the series∑∞

k=1
(−1)k
kp is conditionally convergent.

7. Power series.

Theorem 30. Let a0, a1, a2, . . . be a sequence of numbers and let f(x) be
defined on R by

f(x) =
∞∑
k=0

akx
k

for all x where this converges. If the series converges for x = x0, then it
converges absolutely for all x with |x| < |x0|.

Problem 14. Prove this. Hint: As

f(x0) =
∞∑
k=0

ak(x0)
k

converges we have limk→∞ ak(x0)
k = 0 by Theorem 3. This implies that

〈ak(x0)
k〉∞k=0 is bounded. So there is a constant C with

|ak(x0)
k| = |ak||x0|k ≤ C.

Then for |x| < |x0| we have

|akxk| = |ak||x|k = |ak||x0|k
(
|x|
|x0|

)k

≤ C
(
|x|
|x0|

)k

= Crk

where

r =
|x|
|x0|

< 1. �
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Lemma 31. Let f(x) be as in the last theorem. If the series for f(x)
converges at x = x0, then the series

f∗(x) =

∞∑
k=1

kakx
k−1

converges absolutely for all x with |x| < |x0|. We call f∗ the formal de-
rivative of f as it is what the derivative would be if we knew that we could
take it term at a time. (Shortly we will show that this the actual derivative.)

Problem 15. Prove this. Hint: With notation as in Problem 14 show

|kakxk−1| ≤ kCrk−1

and then show
∑∞

k=1 kCr
k−1 converges by either the root or ratio test. �

Corollary 32. With the same hypothesis as in the last lemma for |x| < |x0|
the series

f∗∗(x) =
∞∑
k=2

k(k − 1)akx
k−2

converges absolutely. (This is the formal second derivative.)

Proof. As |x| < |x0| there is a number r0 such that |x| < r0 < |x0|. By the
lemma the series f∗(r0) converges absolutely. But (with what I hope is not
confusing notation) (f∗)∗(x) = f∗∗(x) so this corollary follows by applying
Lemma 31 to f∗ (with r0 replacing x0). �

Lemma 33. Let k be a positive integer and x, x1, r0 real numbers with
|x|, |x0| < r0. Then∣∣∣∣xk − xk1x− x1

− kxk−11

∣∣∣∣ ≤ k(k − 1)

2
r0

k−2|x− x0|.

Problem 16. Prove this. Hint: This is yet anther opportunity to use Tay-
lor’s theorem. Let p(x) be any two times differentiable function. By Taylor’s
theorem

p(x) = p(x1) + p′(x1)(x− x1) +
p′′(ξ)

2
(x− x1)2

where ξ is between x and x1. This can be rearranged as

p(x)− p(x1)
x− x1

− p′(x1) =
p′′(ξ)

2
(x− x1)

and so ∣∣∣∣p(x)− p(x1)
x− x1

− p′(x1)
∣∣∣∣ =
|p′′(ξ)|

2
|x− x1|.

Now consider the special case where p(x) = xk. Then |p′′(ξ)| = k(k −
1)|ξ|k−2 < k(k − 1)rk−20 as ξ is between x and x1 and |x|, |x1| < r0. �
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Theorem 34. Let a0, a1, a2, . . . be a sequence of numbers and let f(x) be
defined on R by

f(x) =
∞∑
k=0

akx
k

for all x where this converges. If the series converges for x = x0, then the
function f(x) exists and is differentiable for all x with |x| < |x0| and the
derivative is given by the formal derivative

f ′(x) = f∗(x) =
∞∑
k=1

kakx
k−1.

Problem 17. Prove this. Hint: That f(x) exists for |x| < |x0| follows from
Theorem 30. We need so show that if |x1| < |x0| that f is differentiable at x1
and the derivative is f∗(x1). Choose a number r0 such that |x1| < r0 < |x0|.
Let x be such that |x| < r0. Explain why the following hold.

(a) The series for the following all converge absolutely.

f(x), f(x1), f∗(x1), f∗∗(r0).

(b) We have

f(x)− f(x1)

x− x1
− f∗(x1) =

∞∑
k=1

ak

(
xk − xk1
x− x1

− kxk−11

)
(c) The inequality∣∣∣∣f(x)− f(x1)

x− x1
− f∗(x1)

∣∣∣∣ ≤ C|x− x1|
holds, where

C =
1

2

∞∑
k=2

k(k − 1)|ak|rk−10 <∞

holds. (Part of the problem is explaining why C < ∞. The hint
here is that the series for f∗∗(r0) converges absolutely.)

(d) To finish show

f ′(x1) = lim
x→x1

f(x)− f(x1)

x− x1
= f∗(x1). �

Now that we have differentiated we wish to integrate. Note that by The-
orem 34 if the series f(x) =

∑∞
k=0 akx

k converges for x = x0, then it is
differentiable on the interval (−|x0|, ||x0|) and therefore also continuous on
this interval. Thus if |x| < |x0| this implies

∫ x
0 f(t) dt is the integral of a

continuous function and thus it exists.

Theorem 35. Let a0, a1, a2, . . . be a sequence of numbers and let f(x) be
defined on R by

f(x) =
∞∑
k=0

akx
k
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for all x where this converges. If the series converges for x = x0, then for
any x with |x| < |x0|∫ x

0
f(t) dt =

∞∑
k=0

ak
k + 1

xk+1 =

∞∑
k=1

ak−1
k

xk.

That is we can integrate the f(x) term at a time.

Problem 18. Prove this. Hint: Let F (x) be defined to be the formal
integral of f(x). That is

F (x) =

∞∑
k=0

ak
k + 1

xk+1.

Choose r0 with |x| < r0 < |x0|. Then as the series for f(x) is convergent,
its terms are bounded. That is there is a constant C such that

|akxk0| ≤ C.
Then ∣∣∣∣ ak

k + 1
rk+1
0

∣∣∣∣ =
r0|akxk0|
k + 1

∣∣∣∣ r0x0
∣∣∣∣k ≤ r0C

k + 1

∣∣∣∣ r0x0
∣∣∣∣k =

C1

k + 1
rk ≤ C1r

k

where

C1 = r0C and r =

∣∣∣∣ r0x0
∣∣∣∣ < 1.

Now

(a) Explain why the series for F (r0) converges absolutely. Hint: Com-
pare the the geometric series

∑∞
k=0C1r

k.
(b) Explain why F (x) is differentiable on the interval (−r0, r0). Hint:

Theorem 34 with x0 replaced by r0.
(c) The derivative of F (x) on (−r0, r0) is f(x) Hint: Theorem 34 again.
(d) Finish the proof. Hint: Fundamental Theorem of Calculus. �

Now that we know that we can integrate and differentiate power series
we can find new series form old ones.

Example 36. Find the series for (1 + x)−2 on the integral (−1, 1). We know

(1 + x)−1 =
1

1 + x
= 1− x+ x2 − x3 + x4 − x5 + x6 − · · ·

This can be differentiated term at a time to get

−(1 + x)−2 = 0− 1 + 2x− 3x2 + 4x3 − 5x4 + 6x5 − · · ·
so that

(1 + x)−2 = 1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 − · · · =
∞∑
k=0

(−1)k(k + 1)xk.
�

Similar examples can be done by integrating term at a time. Here are
some for you to try.
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Problem 19. (a) Find a series for ln(1 + x) valid on (−1, 1). Hint:

ln(1 + x) =

∫ x

0

dt

1 + t

and you know how to expand 1/(1 + t) in a series.
(b) For any positive integer n find the series for (1+x)−n valid on (−1, 1).
(c) On (−1, 1) we have the convergent geometric series:

1

1 + x2
= 1− x2 + x4 − x6 + x8 − x10 + · · ·

Use this to find a power series for arctan(x) valid on (−1, 1). �


