

# Math 555

# Homework

Problems 1–7 are to be written up and handed in. The rest will be presented in class by whoever I call on.

**Definition 1.** Let  $f$  be defined on an open set  $U$  containing  $x_0$ . Then  $f$  has a **local maximum** (respectively a **local minimum**) at  $x_0$  iff there is a  $\delta > 0$  such that

$$f(x) \leq f(x_0) \quad (\text{respectively } f(x) \geq f(x_0)) \quad \text{for } x \text{ with } |x - x_0| < \delta$$

In this case  $x_0$  is a **local maximizer** (respectively a **local minimizer**) of  $f$ . The point  $x_0$  is a **local extrema** if it is either a local maximizer or a local minimizer.  $\square$

**Theorem 2** (First Derivative Test). *If  $f$  is defined on an open  $U$  set containing the point  $x_0$  and*

- $f$  is differentiable at  $x_0$
- $f$  has a local extrema at  $x_0$ .

then

$$f'(x_0) = 0.$$

**Lemma 3.** Let  $f$  be differentiable at  $x_0$  and let  $\langle x_n \rangle_{n=1}^{\infty}$  be a sequence with

$$\lim_{n \rightarrow \infty} x_n = x_0 \quad \text{and for all } n \quad x_n \neq x_0.$$

Then

$$\lim_{n \rightarrow \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} = f'(x_0)$$

**Problem 1.** Prove this.  $\square$

**Problem 2.** Prove Theorem 2. *Hint:* You do not have to follow this hint, but here is one way to start. Without loss of generality we can assume  $f$  has a local maximum at  $x_0$ . (If it has a local minimum, then replace  $f$  by  $-f$ .) Let

$$x_n = x_0 - \frac{1}{n} \quad \text{and} \quad y_n = x_0 + \frac{1}{n}.$$

Then show

$$\lim_{n \rightarrow \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} \geq 0 \quad \text{and} \quad \lim_{n \rightarrow \infty} \frac{f(y_n) - f(x_0)}{y_n - x_0} \leq 0$$

and use the lemma.  $\square$

**Theorem 4** (Rôle's Theorem). *Let  $f$  be a function that is continuous on  $[a, b]$  and differentiable at all points of  $(a, b)$ . Assume*

$$f(a) = f(b).$$

*Then there exists a point  $\xi \in (a, b)$  such that*

$$f'(\xi) = 0.$$

**Problem 3.** Prove this. *Hint:* Start by showing that either (or both) of the maximum or minimum of  $f$  occur in the open interval  $(a, b)$ .  $\square$

**Theorem 5** (Mean Value Theorem). *Let  $f$  be a function that is continuous on  $[a, b]$  and differentiable at all points of  $(a, b)$ . There there exists a point  $\xi \in (a, b)$  such that*

$$f(b) - f(a) = f'(\xi)(b - a)$$

**Problem 4.** Prove this. *Hint:* One way to start is to show

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$

satisfies the hypothesis of Rôle's Theorem.  $\square$

**Definition 6.** Let  $x_1, x_2$  and  $\xi$  be three real numbers. Then  $\xi$  is **between**  $x_1$  and  $x_2$  iff one of the following three cases holds:

$$\begin{aligned} x_1 &< \xi < x_2 \\ x_2 &< \xi < x_1 \\ x_1 &= \xi = x_2. \end{aligned}$$

□

Often we will use the Mean Value Theorem in the following slightly less general form:

**Theorem 7** (Mean Value Theorem). *Let  $f$  be differentiable on the open interval  $(a, b)$  and let  $x_1, x_2 \in (a, b)$ . There there is  $\xi$  between  $x_1$  and  $x_2$  such that*

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1).$$

*Proof.* If  $x_1 = x_2$ , then let  $\xi = x_1$  and we have  $f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) = 0$ . If  $x_1 \neq x_2$ , then by possibly changing the names of  $x_1$  and  $x_2$  we can assume that  $x_1 < x_2$ . Then  $f$  is continuous on  $[x_1, x_2]$  and differentiable on  $I(x_1, x_2)$ . Therefore we can use our first form of the Mean Value Theorem to conclude there is a  $\xi \in (x_1, x_2)$  with  $f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$ .  $\square$

Before using the Mean Value Theorem to prove theorems let us note that it can be used to prove interesting results about concrete functions. Here are a couple of examples.

*Example 8.* Assume that we know that the derivative of  $\sin(x)$  is  $\cos(x)$ . Then for all  $a, b \in \mathbf{R}$  we have

$$|\sin(b) - \sin(a)| \leq |b - a|.$$

To see this let  $f(x) = \sin(x)$ . Then the Mean Value Theorem tells us there is a  $\xi$  between  $b$  and  $a$  such that

$$|\sin(b) - \sin(a)| = |f(b) - f(a)| = |f'(\xi)(b - a)| = |\cos(\xi)(b - a)| \leq |b - a|$$

where at the last step we used that  $|\cos(\xi)| \leq 1$ .  $\square$

*Example 9.* If  $a, b \geq 2$ , then

$$\left| \frac{a-1}{a+1} - \frac{b-1}{b+1} \right| \leq \frac{2}{9}|b-a|.$$

To see this let

$$f(x) = \frac{x-1}{x+1}.$$

Then if  $\xi \geq 2$  we have

$$f'(\xi) = \frac{2}{(\xi+1)^2} \leq \frac{2}{(2+1)^2} = \frac{2}{9}.$$

Thus if  $a, b \geq 2$  the Mean Value Theorem gives us a  $\xi$  between  $a$  and  $b$  (and therefore  $\xi \geq 2$  such that

$$\left| \frac{a-1}{a+1} - \frac{b-1}{b+1} \right| = |f(b) - f(a)| = |f'(\xi)(b-a)| = \frac{2}{(\xi+1)^2}|b-a| \leq \frac{2}{9}|b-a|. \quad \square$$

**Problem 5.** Use the ideas above to show the following

(a) For all  $x, y \in \mathbf{R}$  the inequality

$$|\cos(4y) - \cos(4x)| \leq 4|y - x|.$$

(b) If  $a, b > 1$  then

$$|\sqrt{b^2 - 1} - \sqrt{a^2 - 1}| \geq |b - a|.$$

(c) If  $x > 0$  then

$$e^x - 1 > x.$$

*Hint:*  $e^x - 1 = e^x - e^0$ .  $\square$

**Theorem 10.** Let  $f$  be differentiable on the open interval  $(a, b)$  and assume

$$f'(x) = 0 \quad \text{for all } x \in (a, b).$$

Then  $f$  is constant.

**Problem 6.** Use the Mean Value Theorem to prove this.  $\square$

**Definition 11.** If  $f$  is a function defined on an interval  $I$ , then  $f$  is **increasing** iff for all  $x_1, x_2 \in I$

$$x_1 < x_2 \implies f(x_1) < f(x_2).$$

**Theorem 12.** Let  $f$  be a function on the open interval and assume that  $f'$  exists on all of  $(a, b)$  and that  $f'(x) > 0$  for all  $x \in (a, b)$ . Then  $f$  is increasing on  $(a, b)$ .

**Problem 7.** Use the Mean Value Theorem to prove this.  $\square$

**Problem 8.** Show that  $f'(x_0)$  exists if and only if the limit

$$\lim_{h \rightarrow 0} \frac{f(x_0) - f(x_0 - h)}{h}$$

exists. When this limit exists what is its value?  $\square$

**Problem 9.** Show that if  $f'(x_0)$  exists, then so does the limit

$$\lim_{h \rightarrow 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

and its value is  $f'(x_0)$ . □

**Problem 10.** Let  $\alpha$  be a positive real number and set

$$f(x) = \begin{cases} |x|^\alpha \cos(1/x), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

For what values of  $\alpha$  does  $f'(0)$  exist. When it does exist what is its value? □

**Proposition 13.** *The function  $f(x) = \sqrt{x}$  is differentiable on  $(0, \infty)$  and*

$$f'(x) = \frac{1}{2\sqrt{x}}.$$

**Problem 11.** Prove this. *Hint:* The calculation

$$\begin{aligned} f(x+h) - f(x) &= \sqrt{x+h} - \sqrt{x} \\ &= \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{\sqrt{x+h} + \sqrt{x}} \\ &= \frac{(x+h) - x}{\sqrt{x+h} + \sqrt{x}} \\ &= \frac{h}{\sqrt{x+h} + \sqrt{x}} \end{aligned}$$

might be useful. □

**Theorem 14** (Cauchy Mean Value Theorem). *Let  $f$  and  $g$  be functions that are differentiable on the open interval  $(a, b)$  and continuous on the closed interval  $[a, b]$ . Then there is a  $\xi \in (a, b)$  such that*

$$g'(\xi)(f(b) - f(a)) = f'(\xi)(g(b) - g(a)).$$

*(Note when  $g$  is the function  $g(x) = x$  this reduces to the usual mean value theorem.)*

**Problem 12.** Prove this. *Hint:* Let

$$h(x) = (g(b) - g(a))(f(x) - f(a)) - (f(b) - f(a))(g(x) - g(a))$$

and show  $h(a) = h(b) = 0$ . □