
Math 555 Homework

Problems 1–7 are to be written up and handed in. The rest will be presented
in class by whoever I call on.

Definition 1. Let f be defined on an open set U containing x0. Then f
has a local maximum (respectively a local minimum) at x0 iff there is
a δ > 0 such that

f(x) ≤ f(x0) (respectively f(x) ≥ f(x0)) for x with |x− x0| < δ

In this case x0 is a local maximizer (respectively a local minimizer) of
f . The point x0 is a local extrema if it is either a local maximizer or a
local minimizer. �

Theorem 2 (First Derivative Test). If f is defined on an open U set con-
taining the point x0 and

• f is differentable at x0
• f has a local extrema at x0.

then
f ′(x0) = 0.

Lemma 3. Let f be differentable at x0 and let 〈xn〉∞n=1 be a sequence with

lim
n→∞

xn = x0 and for all n xn 6= x0.

Then

lim
n→∞

f(xn)− f(x0)

xn − x0
= f ′(x0)

Problem 1. Prove this. �

Problem 2. Prove Theorem 2. Hint: You do not have to follow this hint,
but here is one way to start. Without loss of generality we can assume f
has a local maximum at x0. (If it has a local minimum, then replace f by
−f .) Let

xn = x0 −
1

n
and yn = x0 +

1

n
.

Then show

lim
n→∞

f(xn)− f(x0)

xn − x0
≥ 0 and lim

n→∞

f(xn)− f(x0)

xn − x0
≤ 0

and use the lemma. �

Theorem 4 (Rôlle’s Theorem). Let f be a function that is continuous on
[a, b] and differentable at all points of (a, b). Assume

f(a) = f(b).

Then there exists a point ξ ∈ (a, b) such that

f ′(ξ) = 0.



2

Problem 3. Prove this. Hint: Start by showing that either (or both) of the
maximum or minimum of f occur in the open interval (a, b). �

Theorem 5 (Mean Value Theorem). Let f be a function that is continuous
on [a, b] and differentable at all points of (a, b). There there exists a point
ξ ∈ (a, b) such that

f(b)− f(a) = f ′(ξ)(b− a)

Problem 4. Prove this. Hint: One way to start is to show

g(x) = f(x)− f(b)− f(a)

b− a
(x− a)

satisfies the hypothesis of Rôlle’s Theorem. �

Definition 6. Let x1, x2 and ξ be three real numbers. Then ξ is between
x1 and x2 iff one of the following three cases holds:

x1 <ξ < x2

x2 <ξ < x1

x1 =ξ = x2.
�

Often we will use the Mean Value Theorem in the following slightly less
general form:

Theorem 7 (Mean Value Theorem). Let f be differentable on the open
interval (a, b) and let x1, x2 ∈ (a, b). There there is ξ between x1 and x2
such that

f(x2)− f(x1) = f ′(ξ)(x2 − x1).

Proof. If x1 = x2, then let ξ = x1 and we have f(x2) − f(x1) = f ′(ξ)(x2 −
x1) = 0. If x1 6= x2, then by possibly changing the names of x1 and x2 we
can assume that x1 < x2. Then f is continuous on [x1, x2] and differentiable
on I(x1, x2). Therefore we can use our first form of the Mean Value Theorem
to conclude there is a ξ ∈ (x1, x2) with f(x2)− f(x1) = f ′(ξ)(x2 − x1). �

Before using the Mean Value Theorem to prove theorems let us note that
it can be use to prove interesting results about concrete functions. Here are
a couple of examples.

Example 8. Assume that we know that the derivative of sin(x) is cos(x).
Then for all a, b ∈ R we have

| sin(b)− sin(a)| ≤ |b− a|.

To see this let f(x) = sin(x). Then the Mean Value Theorem tells us there
is a ξ between b and a such that

| sin(b)− sin(a)| = |f(b)− f(a)| = |f ′(ξ)(b− a)| = | cos(ξ)(b− a)| ≤ |b− a|

where at the last step we used that | cos(ξ)| ≤ 1. �
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Example 9. If a, b ≥ 2, then∣∣∣∣a− 1

a+ 1
− b− 1

b+ 1

∣∣∣∣ ≤ 2

9
|b− a|.

To see this let

f(x) =
x− 1

x+ 1
.

Then if ξ ≥ 2 we have

f ′(ξ) =
2

(ξ + 1)2
≤ 2

(2 + 1)2
=

2

9
.

Thus if a, b ≥ 2 the Mean Value Theorem gives us a ξ between a and b (and
therefore ξ ≥ 2 such that∣∣∣∣a− 1

a+ 1
− b− 1

b+ 1

∣∣∣∣ = |f(b)− f(a)| = |f ′(ξ)(b− a)| = 2

(ξ + 1)2
|b− a| ≤ 2

9
|b− a|.

�

Problem 5. Use the ideas above to show the following

(a) For all x, y ∈ R the inequality

| cos(4y)− cos(4x)| ≤ 4|y − x|.
(b) If a, b > 1 then

|
√
b2 − 1−

√
a2 − 1| ≥ |b− a|.

(c) If x > 0 then
ex − 1 > x.

Hint: ex − 1 = ex − e0. �

Theorem 10. Let f be differentable on the open interval (a, b) and assume

f ′(x) = 0 for all x ∈ (a, b).

Then f is constant.

Problem 6. Use the Mean Value Theorem to prove this. �

Definition 11. If f is a function defined on an interval I, then f is in-
creasing iff for all x1, x2 ∈ I

x1 < x2 =⇒ f(x1) < f(x2).

Theorem 12. Let f be a function on the open interval and assume that
f ′ exists on all of (a, b) and that f ′(x) > 0 for all x ∈ (a, b). Then f is
increasing on (a, b).

Problem 7. Use the Mean Value Theorem to prove this. �

Problem 8. Show that f ′(x0) exists if and only if the limit

lim
h→0

f(x0)− f(x0 − h)

h

exsits. When this limit exists what is its value? �
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Problem 9. Show that if f ′(x0) exists, then so does the limit

lim
h→0

f(x0 + h)− f(x0 − h)

2h

and its value is f ′(x0). �

Problem 10. Let α be a positive real number and set

f(x) =

{
|x|α cos(1/x), x 6= 0;

0, x = 0.

For what values of α does f ′(0) exist. When it doses exist what is its
value? �

Proposition 13. The function f(x) =
√
x is differentable on (0,∞) and

f ′(x) =
1

2
√
x
.

Problem 11. Prove this. Hint: The calculation

f(x+ h)− f(x) =
√
x+ h−

√
x

=
(
√
x+ h−

√
x )(
√
x+ h+

√
x )√

x+ h+
√
x

=
(x+ h)− x√
x+ h+

√
x

=
h√

x+ h+
√
x

might be useful. �

Theorem 14 (Cauchy Mean Value Theorem). Let f and g be functions
that are differentable on the open interval (a, b) and continuous on the closed
interval [a, b]. Then there is a ξ ∈ (a, b) such that

g′(ξ)
(
f(b)− f(a)

)
= f ′(ξ)

(
g(b)− g(a)

)
.

(Note when g is the function g(x) = x this reduces to the usual mean value
theorem.

Problem 12. Prove this. Hint: Let

h(x) = (g(b)− g(a))(f(x)− f(a))− (f(b)− f(a))(g(x)− g(a))

and show h(a) = h(b) = 0. �


