Mathematics 172

Name:

You must show your work to get full credit.

1. Take the derivatives of the following:

(a)
$$y = 5e^{7t}$$

$$\frac{dy}{dx} = 350$$

(b)
$$N = N_0 e^{-.72t} N_0$$
 is constant.

$$N' = -.72 \text{ Noc}^{-.72 \times }$$

(c)
$$P(t) = P_0 e^{rt} P_0$$
 and r are constants.

(c)
$$P(t) = P_0 e^{rt} P_0$$
 and r are constants.
$$\frac{dP}{dt} = -P_0 e^{rt} = P_0$$

2. Assume that P satisfies the rate equation P' = .12P and that P(0) = 423. Then give a formula for P(0).

$$P(t) = \frac{4236124}{}$$

3. Assume that N satisfies the rate equation $\frac{dN}{dt} = rN$, that N(0) = 50 and N(5) = 75.

$$V(5) = 75.$$
(a) Find r . N(*) = 50 e^{r}

$$r =$$
 , og $|$, og $|$

Find
$$r$$
. $N(x) = 50e^{xx}$ $r = 08110$

$$N(s) = 50e^{sx} = 75/50$$

$$e^{sx} = 75/50$$

$$f(75/50) = 100(75/50)/5$$

(b) Find a formula for N(t).

$$N(t) = 50 e^{-08110 t}$$

(c) How long until N becomes 10,000?

50 e'08/10 t = 10000 Time to 10,000 is 36.94